"""
Contains a singleton object `db` of type `Database` which allows easy access to surface files, anatomical images, and transforms that are stored in the pycortex filestore.
"""
import os
import re
import copy
import glob
import json
import shutil
import warnings
import tempfile
import functools
import numpy as np
from hashlib import sha1
from builtins import input
from . import options
default_filestore = options.config.get('basic', 'filestore')
def _memo(fn):
@functools.wraps(fn)
def memofn(self, *args, **kwargs):
if not hasattr(self, "_memocache"):
setattr(self, "_memocache", dict())
#h = sha1(str((id(fn), args, kwargs))).hexdigest()
h = str((id(fn), args, kwargs))
if h not in self._memocache:
self._memocache[h] = fn(self, *args, **kwargs)
return copy.deepcopy(self._memocache[h])
return memofn
class SubjectDB(object):
def __init__(self, subj, filestore=default_filestore):
self.subject = subj
self._warning = None
self._transforms = None
self._surfaces = None
self.filestore = filestore
try:
with open(os.path.join(filestore, subj, "warning.txt")) as fp:
self._warning = fp.read()
except IOError:
pass
@property
def transforms(self):
if self._transforms is not None:
return self._transforms
self._transforms = XfmDB(self.subject, filestore=self.filestore)
return self._transforms
@property
def surfaces(self):
if self._surfaces is not None:
return self._surfaces
self._surfaces = SurfaceDB(self.subject, filestore=self.filestore)
return self._surfaces
class SurfaceDB(object):
def __init__(self, subj, filestore=default_filestore):
self.subject = subj
self.types = {}
db = Database(filestore)
for name in db.get_paths(subj)['surfs'].keys():
self.types[name] = Surf(subj, name, filestore=filestore)
def __repr__(self):
return "Surfaces: [{surfs}]".format(surfs=', '.join(list(self.types.keys())))
def __dir__(self):
return list(self.types.keys())
def __getattr__(self, attr):
if attr in self.types:
return self.types[attr]
raise AttributeError(attr)
class Surf(object):
def __init__(self, subject, surftype, filestore=default_filestore):
self.subject, self.surftype = subject, surftype
self.db = Database(filestore)
def get(self, hemisphere="both"):
return self.db.get_surf(self.subject, self.surftype, hemisphere)
def show(self, hemisphere="both"):
from mayavi import mlab
pts, polys = self.db.get_surf(self.subject, self.surftype, hemisphere, merge=True, nudge=True)
return mlab.triangular_mesh(pts[:,0], pts[:,1], pts[:,2], polys)
class XfmDB(object):
def __init__(self, subj, filestore=default_filestore):
self.subject = subj
self.filestore = filestore
self.xfms = Database(self.filestore).get_paths(subj)['xfms']
def __getitem__(self, name):
if name in self.xfms:
return XfmSet(self.subject, name, filestore=self.filestore)
raise AttributeError
def __repr__(self):
return "Transforms: [{xfms}]".format(xfms=",".join(self.xfms))
class XfmSet(object):
def __init__(self, subj, name, filestore=default_filestore):
self.subject = subj
self.name = name
jspath = os.path.join(filestore, subj, 'transforms', name, 'matrices.xfm')
with open(jspath) as fp:
self._jsdat = json.load(fp)
self.masks = MaskSet(subj, name, filestore=filestore)
self.db = Database(filestore)
def __getattr__(self, attr):
if attr in self._jsdat:
return self.db.get_xfm(self.subject, self.name, attr)
raise AttributeError
def __repr__(self):
return "Types: {types}".format(types=", ".join(self._jsdat.keys()))
class MaskSet(object):
def __init__(self, subj, name, filestore=default_filestore):
self.subject = subj
self.xfmname = name
maskform = Database(filestore).get_paths(subj)['masks']
maskpath = maskform.format(xfmname=name, type='*')
self._masks = dict((os.path.split(path)[1][5:-7], path) for path in glob.glob(maskpath))
def __getitem__(self, item):
import nibabel
return nibabel.load(self._masks[item]).get_data().T
def __repr__(self):
return "Masks: [{types}]".format(types=', '.join(self._masks.keys()))
[docs]class Database(object):
"""
Database()
Surface database
Attributes
----------
This database object dynamically generates handles to all subjects within the filestore.
"""
[docs] def __init__(self, filestore=default_filestore):
self.filestore = filestore
self._subjects = None
self.auxfile = None
def __repr__(self):
subjs = "\n ".join(sorted(self.subjects.keys()))
return """Pycortex database\n Subjects:\n {subjs}""".format(subjs=subjs)
def __getattr__(self, attr):
if attr in self.subjects:
if self.subjects[attr]._warning is not None:
warnings.warn(self.subjects[attr]._warning)
return self.subjects[attr]
else:
raise AttributeError
def __dir__(self):
return ["save_xfm","get_xfm", "get_surf", "get_anat", "get_surfinfo", "subjects", # "get_paths", # Add?
"get_mask", "get_overlay","get_cache", "get_view", "save_view", "get_mnixfm",
'get_mri_surf2surf_matrix'] + list(self.subjects.keys())
@property
def subjects(self):
if self._subjects is not None:
return self._subjects
subjs = os.listdir(os.path.join(self.filestore))
subjs = [s for s in subjs if os.path.isdir(os.path.join(self.filestore, s))]
self._subjects = dict([(sname, SubjectDB(sname, filestore=self.filestore)) for sname in subjs])
return self._subjects
[docs] def get_anat(self, subject, type='raw', xfmname=None, recache=False, order=1, **kwargs):
"""Return anatomical information from the filestore. Anatomical information is defined as
any volume-space anatomical information pertaining to the subject, such as T1 image,
white matter masks, etc. Volumes not found in the database will be automatically generated.
Parameters
----------
subject : str
Name of the subject
type : str
Type of anatomical volume to return. This should be the name of one of the
recache : bool
Regenerate the information
Returns
-------
volume : nibabel object
Volume containing
"""
opts = ""
if len(kwargs) > 0:
opts = "[%s]"%','.join(["%s=%s"%i for i in kwargs.items()])
anatform = self.get_paths(subject)['anats']
anatfile = anatform.format(type=type, opts=opts, ext="nii.gz")
if not os.path.exists(anatfile) or recache:
print("Generating %s anatomical..."%type)
from . import anat
getattr(anat, type)(anatfile, subject, **kwargs)
import nibabel
anatnib = nibabel.load(anatfile)
if xfmname is None:
return anatnib
from . import volume
return volume.anat2epispace(anatnib.get_data().T.astype(np.float), subject, xfmname, order=order)
[docs] def get_surfinfo(self, subject, type="curvature", recache=False, **kwargs):
"""Return auxillary surface information from the filestore. Surface info is defined as
anatomical information specific to a subject in surface space. A Vertex class will be returned
as necessary. Info not found in the filestore will be automatically generated.
See documentation in cortex.surfinfo for auto-generation code
Parameters
----------
subject: str
Subject name for which to return info
type: str
Type of surface info returned, IE. curvature, distortion, sulcaldepth, etc.
recache: bool
Regenerate the information
Returns
-------
verts : Vertex class
If the surface information has "left" and "right" entries, a Vertex class is returned
- OR -
npz : npzfile
Otherwise, an npz object is returned. Remember to close it!
"""
opts = ""
if len(kwargs) > 0:
opts = "[%s]"%','.join(["%s=%s"%i for i in kwargs.items()])
try:
self.auxfile.get_surf(subject, "fiducial")
surfifile = os.path.join(self.get_cache(subject),"%s%s.npz"%(type, opts))
except (AttributeError, IOError):
surfiform = self.get_paths(subject)['surfinfo']
surfifile = surfiform.format(type=type, opts=opts)
if not os.path.exists(os.path.join(self.filestore, subject, "surface-info")):
os.makedirs(os.path.join(self.filestore, subject, "surface-info"))
if not os.path.exists(surfifile) or recache:
print ("Generating %s surface info..."%type)
from . import surfinfo
getattr(surfinfo, type)(surfifile, subject, **kwargs)
npz = np.load(surfifile)
if "left" in npz and "right" in npz:
from .dataset import Vertex
verts = np.hstack([npz['left'], npz['right']])
npz.close()
return Vertex(verts, subject)
return npz
[docs] def get_mri_surf2surf_matrix(self, subject, surface_type, hemi='both',
fs_subj=None, target_subj='fsaverage',
**kwargs):
"""Get matrix generated by surf2surf to map one subject's surface to another's
Parameters
----------
subject : pycortex
pycortex subject ID
surface_type : str
type of surface; one of ['fiducial', 'inflated', 'white',
'pial'] ... more?
hemi : str or list
one of: 'both', 'lh', 'rh'
fs_subj : str
string ID for freesurfer subject (if different from
pycortex subject ID; None assumes they are the same)
target_subj : str
string ID for freesurfer subject to which to map surface
from `subject` (or `fs_subj`)
Other Parameters
----------------
subjects_dir : str
Custom path to freesurfer subjects dir can be specified in the
keyword args
n_neighbors : int
...
random_state : scalar
...
n_test_images : int
...
coef_threshold : scalar or None
...
renormalize : bool
...
"""
from .freesurfer import get_mri_surf2surf_matrix as mri_s2s
from .utils import load_sparse_array, save_sparse_array
if fs_subj is None:
fs_subj = subject
fpath = self.get_paths(subject)['surf2surf'].format(source=fs_subj, target=target_subj)
# Backward compatiblity
fdir, _ = os.path.split(fpath)
if not os.path.exists(fdir):
print("Creating surf2surf directory for subject %s"%(subject))
os.makedirs(fdir)
if hemi == 'both':
hemis = ['lh', 'rh']
else:
hemis = [hemi]
if os.path.exists(fpath):
mats = [load_sparse_array(fpath, h) for h in hemis]
else:
mats = []
for h in hemis:
tmp = mri_s2s(fs_subj, h, surface_type,
target_subj=target_subj, **kwargs)
mats.append(tmp)
save_sparse_array(fpath, tmp, h, mode='a')
return mats
[docs] def get_overlay(self, subject, overlay_file=None, **kwargs):
from . import svgoverlay
pts, polys = self.get_surf(subject, "flat", merge=True, nudge=True)
paths = self.get_paths(subject)
# NOTE: This try loop is broken, in that it does nothing for the inteded
# use case (loading an overlay from a packed subject) - needs fixing.
# This hasn't come up yet due to very rare use of packed subjects.
if self.auxfile is not None:
try:
# Prob should be something like:
#self.auxfile.get_overlay(subject, **kwargs)
tf = self.auxfile.get_overlay(subject) # kwargs??
svgfile = tf.name
except (AttributeError, IOError):
# I think the rest of the code should be here (as in other functions...)
pass
if 'pts' in kwargs:
pts = kwargs['pts']
del kwargs['pts']
# ... and `svgfile` variable should be used here...
if os.path.exists(paths['rois']) and not os.path.exists(paths['overlays']):
svgoverlay.import_roi(paths['rois'], paths['overlays'])
if overlay_file is None:
overlay_file = paths['overlays']
return svgoverlay.get_overlay(subject, overlay_file, pts, polys, **kwargs)
[docs] def save_xfm(self, subject, name, xfm, xfmtype="magnet", reference=None):
"""
Load a transform into the surface database. If the transform exists already, update it
If it does not exist, copy the reference epi into the filestore and insert.
Parameters
----------
subject : str
Name of the subject
name : str
Name to identify the transform
xfm : (4,4) array
The affine transformation matrix
xfmtype : str, optional
Type of the provided transform, either magnet space or coord space.
Defaults to 'magnet'.
reference : str, optional
The nibabel-compatible reference image associated with this transform.
Required if name not in database
"""
if xfmtype not in ["magnet", "coord"]:
raise TypeError("Unknown transform type")
import nibabel
path = os.path.join(self.filestore, subject, "transforms", name)
fname = os.path.join(path, "matrices.xfm")
if os.path.exists(fname):
with open(fname) as fp:
jsdict = json.load(fp)
else:
os.mkdir(path)
if reference is None:
raise ValueError("Please specify a reference")
fpath = os.path.join(path, "reference.nii.gz")
nib = nibabel.load(reference)
data = nib.get_data()
if len(data.shape) > 3:
import warnings
warnings.warn('You are importing a 4D dataset, automatically selecting the first volume as reference')
data = data[...,0]
out = nibabel.Nifti1Image(data, nib.get_affine(), header=nib.get_header())
nibabel.save(out, fpath)
jsdict = dict()
nib = nibabel.load(os.path.join(path, "reference.nii.gz"))
if xfmtype == "magnet":
jsdict['magnet'] = np.array(xfm).tolist()
jsdict['coord'] = np.dot(np.linalg.inv(nib.get_affine()), xfm).tolist()
elif xfmtype == "coord":
jsdict['coord'] = np.array(xfm).tolist()
jsdict['magnet'] = np.dot(nib.get_affine(), xfm).tolist()
files = self.get_paths(subject)
if len(glob.glob(files['masks'].format(xfmname=name, type="*"))) > 0:
raise ValueError('Refusing to change a transform with masks')
with open(fname, "w") as fp:
json.dump(jsdict, fp, sort_keys=True, indent=4)
[docs] def get_xfm(self, subject, name, xfmtype="coord"):
"""Retrieves a transform from the filestore
Parameters
----------
subject : str
Name of the subject
name : str
Name of the transform
xfmtype : str, optional
Type of transform to return. Defaults to coord.
"""
from .xfm import Transform
if xfmtype == 'coord':
try:
return self.auxfile.get_xfm(subject, name)
except (AttributeError, IOError):
pass
if name == "identity":
nib = self.get_anat(subject, 'raw')
return Transform(np.linalg.inv(nib.get_affine()), nib)
fname = os.path.join(self.filestore, subject, "transforms", name, "matrices.xfm")
reference = os.path.join(self.filestore, subject, "transforms", name, "reference.nii.gz")
with open(fname) as f:
xfmdict = json.load(f)
return Transform(xfmdict[xfmtype], reference)
[docs] @_memo
def get_surf(self, subject, type, hemisphere="both", merge=False, nudge=False):
'''Return the surface pair for the given subject, surface type, and hemisphere.
Parameters
----------
subject : str
Name of the subject
type : str
Type of surface to return, probably in (fiducial, inflated,
veryinflated, hyperinflated, superinflated, flat)
hemisphere : "lh", "rh"
Which hemisphere to return
merge : bool
Vstack the hemispheres, if requesting both
nudge : bool
Nudge the hemispheres apart from each other, for overlapping surfaces
(inflated, etc)
Returns
-------
left, right :
If request is for both hemispheres, otherwise:
pts, polys, norms : ((p,3) array, (f,3) array, (p,3) array or None)
For single hemisphere
'''
try:
return self.auxfile.get_surf(subject, type, hemisphere, merge=merge, nudge=nudge)
except (AttributeError, IOError):
pass
files = self.get_paths(subject)['surfs']
if hemisphere.lower() == "both":
left, right = [ self.get_surf(subject, type, hemisphere=h) for h in ["lh", "rh"]]
if type != "fiducial" and nudge:
left[0][:,0] -= left[0].max(0)[0]
right[0][:,0] -= right[0].min(0)[0]
if merge:
pts = np.vstack([left[0], right[0]])
polys = np.vstack([left[1], right[1]+len(left[0])])
return pts, polys
return left, right
elif hemisphere.lower() in ("lh", "left"):
hemi = "lh"
elif hemisphere.lower() in ("rh", "right"):
hemi = "rh"
else:
raise TypeError("Not a valid hemisphere name")
if type == 'fiducial' and 'fiducial' not in files:
wpts, polys = self.get_surf(subject, 'wm', hemi)
ppts, _ = self.get_surf(subject, 'pia', hemi)
return (wpts + ppts) / 2, polys
try:
from . import formats
fnm = str(os.path.splitext(files[type][hemi])[0])
return formats.read(fnm)
except KeyError:
raise IOError
[docs] def save_mask(self, subject, xfmname, type, mask):
fname = self.get_paths(subject)['masks'].format(xfmname=xfmname, type=type)
if os.path.exists(fname):
raise IOError('Refusing to overwrite existing mask')
import nibabel
xfm = self.get_xfm(subject, xfmname)
if xfm.shape != mask.shape:
raise ValueError("Invalid mask shape: must match shape of reference image")
affine = xfm.reference.get_affine()
nib = nibabel.Nifti1Image(mask.astype(np.uint8).T, affine)
nib.to_filename(fname)
[docs] def get_mask(self, subject, xfmname, type='thick'):
if hasattr(type, 'decode'):
type = type.decode('utf8')
try:
self.auxfile.get_mask(subject, xfmname, type)
except (AttributeError, IOError):
pass
fname = self.get_paths(subject)['masks'].format(xfmname=xfmname, type=type)
try:
import nibabel
nib = nibabel.load(fname)
return nib.get_data().T != 0
except IOError:
print('Mask not found, generating...')
from .utils import get_cortical_mask
mask = get_cortical_mask(subject, xfmname, type)
self.save_mask(subject, xfmname, type, mask)
return mask
[docs] def get_shared_voxels(self, subject, xfmname, hemi="both", merge=True, use_astar=True, recache=False):
"""Get an array indicating which vertices are inappropriately mapped to the same voxel.
For a given transform and surface, returns an array containing a list of vertices which
are spatially distant on the cortical surface but that map to the same voxels (this occurs
at sulcal crossings)
"""
# Test for packed subjects
try:
voxels = self.auxfile.get_shared_voxels(subject, xfmname, hemi=hemi, merge=merge, use_astar=use_astar)
return voxels
except (AttributeError, IOError):
pass
# Proceed w/ potential load
shared_voxel_file = os.path.join(self.get_cache(subject), 'shared_vertices_{xfmname}_{hemi}.npy'.format(xfmname=xfmname, hemi=hemi))
if not os.path.exists(shared_voxel_file) or recache:
print('Shared voxel array not found, generating...')
from .utils import get_shared_voxels as _get_shared_voxels
voxels = _get_shared_voxels(subject, xfmname, hemi=hemi, merge=merge, use_astar=use_astar)
np.save(shared_voxel_file, voxels)
return voxels
else:
voxels = np.load(shared_voxel_file)
return voxels
[docs] def get_coords(self, subject, xfmname, hemisphere="both", magnet=None):
"""Calculate the coordinates of each vertex in the epi space by transforming the fiducial to the coordinate space
Parameters
----------
subject : str
Name of the subject
xfmname : str
Name of the transform
hemisphere : str, optional
Which hemisphere to return. If "both", return concatenated. Defaults to "both".
"""
import warnings
warnings.warn('Please use a Mapper object instead', DeprecationWarning)
if magnet is None:
xfm = self.get_xfm(subject, xfmname, xfmtype="coord")
else:
xfm = self.get_xfm(subject, xfmname, xfmtype="magnet")
xfm = np.linalg.inv(magnet) * xfm
coords = []
vtkTmp = self.get_surf(subject, "fiducial", hemisphere=hemisphere, nudge=False)
if not isinstance(vtkTmp,(tuple,list)):
vtkTmp = [vtkTmp]
for pts, polys in vtkTmp:
wpts = np.vstack([pts.T, np.ones(len(pts))])
coords.append(np.dot(xfm.xfm, wpts)[:3].round().astype(int).T)
return coords
[docs] def get_cache(self, subject):
try:
self.auxfile.get_surf(subject, "fiducial")
#generate the hashed name of the filename and subject as the directory name
import hashlib
hashname = "pycx_%s"%hashlib.md5(self.auxfile.h5.filename).hexdigest()[-8:]
cachedir = os.path.join(tempfile.gettempdir(), hashname, subject)
except (AttributeError, IOError):
try:
# Get cache dir from config file
cachedir = os.path.join(options.config.get('basic', 'cache'),
subject, 'cache')
except options.configparser.NoOptionError:
# If not defined, go with default cache
cachedir = os.path.join(self.filestore, subject, "cache")
cachedir = os.path.expanduser(cachedir)
if not os.path.exists(cachedir):
os.makedirs(cachedir)
return cachedir
[docs] def clear_cache(self, subject, clear_all_caches=True):
"""Clears config-specified and default file caches for a subject.
"""
local_cachedir = self.get_cache(subject)
shutil.rmtree(local_cachedir)
os.makedirs(local_cachedir)
# Check on default cache for subject as well, on the off chance
# that other people have cached files here for this subject
default_cachedir = os.path.join(self.filestore, subject, "cache")
if clear_all_caches is True:
# Just delete them.
shutil.rmtree(default_cachedir)
os.makedirs(default_cachedir)
if (len(os.listdir(default_cachedir)) > 0):
# Make sure you didn't want to delete them. You probably should.
proceed = input("Files exist in %s too! Delete them? [y]/n: "%default_cachedir)
if proceed.lower() in ('', 'y'):
shutil.rmtree(default_cachedir)
os.makedirs(default_cachedir)
[docs] def get_paths(self, subject):
"""Get a dictionary with a list of all candidate filenames for associated data, such as roi overlays, flatmap caches, and ctm caches.
"""
surfpath = os.path.join(self.filestore, subject, "surfaces")
if self.subjects[subject]._warning is not None:
warnings.warn(self.subjects[subject]._warning)
surfs = dict()
for surf in os.listdir(surfpath):
ssurf = os.path.splitext(surf)[0].split('_')
name = '_'.join(ssurf[:-1])
hemi = ssurf[-1]
if name not in surfs:
surfs[name] = dict()
surfs[name][hemi] = os.path.abspath(os.path.join(surfpath,surf))
viewsdir = os.path.join(self.filestore, subject, "views")
if not os.path.exists(viewsdir):
os.makedirs(viewsdir)
views = os.listdir(viewsdir)
filenames = dict(
surfs=surfs,
xfms=sorted(os.listdir(os.path.join(self.filestore, subject, "transforms"))),
xfmdir=os.path.join(self.filestore, subject, "transforms", "{xfmname}", "matrices.xfm"),
anats=os.path.join(self.filestore, subject, "anatomicals", '{type}{opts}.{ext}'),
surfinfo=os.path.join(self.filestore, subject, "surface-info", '{type}{opts}.npz'),
masks=os.path.join(self.filestore, subject, 'transforms', '{xfmname}', 'mask_{type}.nii.gz'),
rois=os.path.join(self.filestore, subject, "rois.svg").format(subj=subject),
overlays=os.path.join(self.filestore, subject, "overlays.svg").format(subj=subject),
views=sorted([os.path.splitext(f)[0] for f in views]),
surf2surf=os.path.join(self.filestore, subject, "surf2surf", "{source}_to_{target}", "matrices.hdf"),
)
return filenames
[docs] def make_subj(self, subject):
if os.path.exists(os.path.join(self.filestore, subject)):
if input("Are you sure you want to overwrite this existing subject?\n"
"This will delete all files for this subject in the filestore, "
"including all blender cuts. Type YES\n") == "YES":
shutil.rmtree(os.path.join(self.filestore, subject))
else:
raise ValueError('Do not overwrite')
for dirname in ['transforms', 'anatomicals', 'cache', 'surfaces', 'surface-info','views']:
try:
path = os.path.join(self.filestore, subject, dirname)
os.makedirs(path)
except OSError:
print("Error making directory %s"%path)
[docs] def save_view(self,vw,subject,name,is_overwrite=False):
"""Set the view for an open webshow instance from a saved view
Sets the view in a currently-open cortex.webshow instance (with handle `vw`)
to the saved view named `name`
Parameters
----------
vw : handle for pycortex webgl viewer
Handle for open webgl session (returned by cortex.webshow)
subject : string
pycortex subject id
name : string
Name of stored view to re-load
Notes
-----
Equivalent to call to vw.save_view(subject,name)
For a list of the view parameters saved, see viewer._capture_view
"""
view = vw._capture_view()
sName = os.path.join(self.filestore, subject, "views", name+'.json')
if os.path.exists(sName):
if not is_overwrite:
raise IOError('Refusing to over-write extant view If you want to do this, set is_overwrite=True!')
with open(sName,'w') as fp:
json.dump(view, fp)
[docs] def get_view(self,vw,subject,name):
"""Set the view for an open webshow instance from a saved view
Sets the view in a currently-open cortex.webshow instance (with handle `vw`)
to the saved view named `name`
Parameters
----------
vw : handle for cortex.webshow
Handle for open webshow session (returned by cortex.webshow)
subject : string, subject name
name : string
Name of stored view to re-load
Notes
-----
Equivalent to call to vw.get_view(subject,name)
For a list of the view parameters saved, see viewer._capture_view
"""
sName = os.path.join(self.filestore, subject, "views", name+'.json')
with open(sName) as fp:
view = json.load(fp)
vw._set_view(**view)
[docs] def get_mnixfm(self, subject, xfm, template=None):
"""Get transform from the space specified by `xfm` to MNI space.
Parameters
----------
subject : str
Subject identifier
xfm : str
Name of functional space transform. Can be 'identity' for anat space.
template : str or None, optional
Path to MNI template volume. If None, uses default specified in cortex.mni
Returns
-------
mnixfm : numpy.ndarray
Transformation matrix from the space specified by `xfm` to MNI space.
Notes
-----
Equivalent to cortex.mni.compute_mni_transform, but this function also caches
the result (which is nice because computing it can be slow).
See Also
--------
cortex.mni.compute_mni_transform
cortex.mni.transform_to_mni
cortex.mni.transform_mni_to_subject
"""
from . import mni
if template is None:
templatehash = "default"
else:
templatehash = sha1(template).hexdigest()
# Check cache first
mnixfmfile = os.path.join(self.get_cache(subject), "mni_xfm-%s-%s.txt"%(xfm, templatehash))
if os.path.exists(mnixfmfile):
mnixfm = np.loadtxt(mnixfmfile)
else:
# Run the transform
if template is None:
mnixfm = mni.compute_mni_transform(subject, xfm)
else:
mnixfm = mni.compute_mni_transform(subject, xfm, template)
# Cache the result
mni._save_fsl_xfm(mnixfmfile, mnixfm)
return mnixfm
db = Database()