Source code for cortex.segment

"""Controls functions for segmentation of white/gray matter and other things in the brain.
"""
import os
import time
import shlex
import warnings
import numpy as np
import subprocess as sp
from builtins import input
import multiprocessing as mp

from . import formats
from . import blender
from . import freesurfer
from . import options
from .database import db

from .freesurfer import autorecon as run_freesurfer_recon
from .freesurfer import import_subj as import_freesurfer_subject

slim_path = options.config.get('dependency_paths', 'slim')


[docs]def init_subject(subject, filenames, do_import_subject=False, **kwargs): """Run the first initial segmentation for a subject's anatomy (in Freesurfer). This function creates a Freesurfer subject and runs autorecon-all, then (optionally) imports the subject into the pycortex database. NOTE: This function requires a functional Freesurfer install! Also, still can't handle T2 weighted anatomical volume input. Please use Freesurfer directly (and then import) for advanced recon-all input options; this is just a convenience function. Parameters ---------- subject : str The name of the subject (this subject is created in the Freesurfer SUBJECTS_DIR) filenames : str or list Freesurfer-compatible filename(s) for the anatomical image(s). This can be the first dicom file of a series of dicoms, a nifti file, an mgz file, etc. do_import_subject : bool Whether to import the Freesurfer-processed subject (without further) editing) into pycortex. False by default, since we recommend editing (or at least inspecting) the brain mask and white matter segmentations prior to importing into pycortex. kwargs : keyword arguments passed to cortex.freesurfer.autorecon() useful ones: parallel=True, n_cores=4 (or more, if you have them) """ if 'run_all' in kwargs: warnings.warn('`run_all` is deprecated - please use do_import_subject keyword arg instead!') do_import_subject = kwargs.pop('run_all') if not isinstance(filenames, (list, tuple)): filenames = [filenames] filenames = ' '.join(['-i %s'%f for f in filenames]) cmd = "recon-all {fname} -s {subj}".format(subj=subject, fname=filenames) print("Calling:\n%{}".format(cmd)) sp.call(shlex.split(cmd)) run_freesurfer_recon(subject, "all", **kwargs) if do_import_subject: import_freesurfer_subject(subject)
def edit_segmentation(subject, volumes=('aseg.mgz', 'brainmask.mgz', 'wm.mgz'), surfaces=('lh.smoothwm', 'rh.smoothwm', 'lh.pial', 'rh.pial'), freesurfer_subject_dir=None): """Edit automatic segmentation results using freeview Opens an instance of freeview with relevant files loaded. Parameters ---------- subject : str freesurfer subject identifier. Note that subject must be in your SUBJECTS_DIR for freesurfer. If the environment variable SUBJECTS_DIR is not set in your shell, then the location of the directory must be specified in `freesurfer_subject_dir`. volumes : tuple | list Names of volumes to load in freeview surfaces : tuple | list Names of surfaces to load in freeview freesurfer_subject_dir : str | None Location of freesurfer subjects directory. If None, defaults to value of SUBJECTS_DIR environment variable. """ if freesurfer_subject_dir is None: freesurfer_subject_dir = os.environ['SUBJECTS_DIR'] cmaps = {'brain': 'grayscale', 'aseg': 'lut', 'brainmask': 'gray', 'wm': 'heat', 'smoothwm': 'yellow', 'white': 'green', 'pial': 'blue' } opacity={'brain': 1.0, 'aseg': 0.4, 'brainmask': 1.0, 'wm': 0.4, } vols = [] for v in volumes: vpath = os.path.join(freesurfer_subject_dir, subject, 'mri', v) vv, _ = os.path.splitext(v) vextra = ':colormap={cm}:opacity={op:0.2f}'.format(cm=cmaps[vv], op=opacity[vv]) vols.append(vpath + vextra) surfs = [] for s in surfaces: spath = os.path.join(freesurfer_subject_dir, subject, 'surf', s) _, ss = s.split('.') sextra = ':edgecolor={col}'.format(col=cmaps[ss]) surfs.append(spath + sextra) cmd = ["freeview", '-v'] + vols + ['-f'] + surfs print("Calling: {}".format(' '.join(cmd))) sp.call(cmd) print("If you have edited the white matter surface, you should run:\n") print(" `cortex.segment.run_freesurfer_recon('%s', 'wm')`\n"%subject) print("If you have edited the brainmask (pial surface), you should run:\n") print(" `cortex.segment.run_freesurfer_recon('%s', 'pia')`"%subject)
[docs]def cut_surface(cx_subject, hemi, name='flatten', fs_subject=None, data=None, freesurfer_subject_dir=None, flatten_with='freesurfer', do_import_subject=True, **kwargs): """Initializes an interface to cut the segmented surface for flatmapping. This function creates or opens a blend file in your filestore which allows surfaces to be cut along hand-defined seams. Blender will automatically open the file. After edits are made, remember to save the file, then exit Blender. The surface will be automatically extracted from blender then run through the mris_flatten command in freesurfer. The flatmap will be imported once that command finishes if `do_import_subject` is True (default value). Parameters ---------- cx_subject : str Name of the subject to edit (pycortex subject ID) hemi : str Which hemisphere to flatten. Should be "lh" or "rh" name : str, optional String name of the current flatten attempt. Defaults to "flatten" data : Dataview A data view object to display on the surface as a cutting guide. fs_subject : str Name of Freesurfer subject (if different from pycortex subject) None defaults to `cx_subject` freesurfer_subject_dir : str Name of Freesurfer subject directory. None defaults to SUBJECTS_DIR environment varible flatten_with : str 'freesurfer' or 'SLIM' - 'freesurfer' (default) uses freesurfer's `mris_flatten` function to flatten the cut surface. 'SLIM' uses the SLIM algorithm, which takes much less time but tends to leave more distortions in the flatmap. SLIM is an optional dependency, and must be installed to work; clone the code (https://github.com/MichaelRabinovich/Scalable-Locally-Injective-Mappings) to your computer and set the slim dependency path in your pycortex config file to point to </path/to/your/slim/install>/ReweightedARAP do_import_subject : bool set option to automatically import flatmaps when both are completed (if set to false, you must import later with `cortex.freesurfer.import_flat()`) """ if fs_subject is None: fs_subject = cx_subject opts = "[hemi=%s,name=%s]"%(hemi, name) fname = db.get_paths(cx_subject)['anats'].format(type='cutsurf', opts=opts, ext='blend') # Double-check that fiducial and inflated vertex counts match # (these may not match if a subject is initially imported from freesurfer to pycortex, # and then edited further for a better segmentation and not re-imported) ipt, ipoly, inrm = freesurfer.get_surf(fs_subject, hemi, 'inflated') fpt, fpoly, fnrm = freesurfer.get_surf(fs_subject, hemi, 'fiducial') if ipt.shape[0] != fpt.shape[0]: raise ValueError("Please re-import subject - fiducial and inflated vertex counts don't match!") else: print('Vert check ok!') if not os.path.exists(fname): blender.fs_cut(fname, fs_subject, hemi, freesurfer_subject_dir) # Add localizer data to facilitate cutting if data is not None: blender.add_cutdata(fname, data, name=data.description) blender_cmd = options.config.get('dependency_paths', 'blender') sp.call([blender_cmd, fname]) patchpath = freesurfer.get_paths(fs_subject, hemi, freesurfer_subject_dir=freesurfer_subject_dir) patchpath = patchpath.format(name=name) blender.write_patch(fname, patchpath) if flatten_with == 'freesurfer': done = freesurfer.flatten(fs_subject, hemi, patch=name, freesurfer_subject_dir=freesurfer_subject_dir, **kwargs) if not done: # If flattening is aborted, skip the rest of this function # (Do not attempt to import completed flatmaps) return if do_import_subject: # Check to see if both hemispheres have been flattened other = freesurfer.get_paths(fs_subject, "lh" if hemi == "rh" else "rh", freesurfer_subject_dir=freesurfer_subject_dir) other = other.format(name=name+".flat") # If so, go ahead and import subject if os.path.exists(other): freesurfer.import_flat(fs_subject, name, cx_subject=cx_subject, flat_type='freesurfer', freesurfer_subject_dir=freesurfer_subject_dir) elif flatten_with == 'SLIM': done = flatten_slim(fs_subject, hemi, patch=name, freesurfer_subject_dir=freesurfer_subject_dir, **kwargs) if not done: # If flattening is aborted, skip the rest of this function # (Do not attempt to import completed flatmaps) return if do_import_subject: other = freesurfer.get_paths(fs_subject, "lh" if hemi == "rh" else "rh", type='slim', freesurfer_subject_dir=freesurfer_subject_dir) other = other.format(name=name) # If so, go ahead and import subject if os.path.exists(other): freesurfer.import_flat(fs_subject, name, cx_subject=cx_subject, flat_type='slim', freesurfer_subject_dir=freesurfer_subject_dir) return
def flatten_slim(subject, hemi, patch, n_iterations=20, freesurfer_subject_dir=None, slim_path=slim_path, do_flatten=None): """Flatten brain w/ slim object flattening Parameters ---------- subject : str freesurfer subject hemi : str 'lh' or 'rh' for left or right hemisphere patch : str name of patch, often "flatten" (obj file used here is {hemi}_{patch}.obj in the subject's freesurfer directory) freesurfer_subject_dir : str path to freesurfer subejct dir. Defaults to environment variable SUBJECTS_DIR slim_path : str path to SLIM flattening. Defaults to path specified in config file. """ if slim_path == 'None': slim_url = 'https://github.com/MichaelRabinovich/Scalable-Locally-Injective-Mappings' raise ValueError("Please download SLIM ({slim_url}) and set the path to it in the `slim` field\n" "in the `[dependency_paths]` section of your config file ({usercfg}) \n" "if you wish to use slim!".format(slim_url=slim_url, usercfg=options.usercfg)) if do_flatten is None: resp = input('Flattening with SLIM will take a few mins. Continue? (type y or n and press return)') do_flatten = resp.lower() in ('y', 'yes') if not do_flatten: print("Not flattening...") return # File paths if freesurfer_subject_dir is None: freesurfer_subject_dir = os.environ['SUBJECTS_DIR'] patchpath = freesurfer.get_paths(subject, hemi, freesurfer_subject_dir=freesurfer_subject_dir) patchpath = patchpath.format(name=patch) obj_in = patchpath.replace('.patch.3d', '.obj') obj_out = obj_in.replace('.obj', '_slim.obj') # Load freesurfer surface exported from blender pts, polys, _ = freesurfer.get_surf(subject, hemi, "patch", patch=patch, freesurfer_subject_dir=freesurfer_subject_dir) # Cull pts that are not in manifold pi = np.arange(len(pts)) pii = np.in1d(pi, polys.flatten()) idx = np.nonzero(pii)[0] pts_new = pts[idx] # Match indices in polys to new index for pts polys_new = np.vstack([np.searchsorted(idx, p) for p in polys.T]).T # save out obj file print("Writing input to SLIM: %s"%obj_in) formats.write_obj(obj_in, pts_new, polys_new) # Call slim to write new obj file print('Flattening with SLIM (will take a few minutes)...') slim_cmd = [slim_path, obj_in, obj_out, str(n_iterations)] print('Calling: {}'.format(' '.join(slim_cmd))) out = sp.check_output(slim_cmd) print("SLIM code wrote %s"%obj_out) # Load resulting obj file _, _, _, uv = formats.read_obj(obj_out, uv=True) uv = np.array(uv) # Re-center UV & scale to match scale of inflated brain. It is necessary # to re-scale the uv coordinates generated by SLIM, since they have # arbitrary units that don't match the scale of the inflated / # fiducial brains. uv -= uv.min(0) uv /= uv.max() uv -= (uv.max(0) / 2) infl_scale = np.max(np.abs(pts_new.min(0)-pts_new.max(0))) # This is a magic number based on the approximate scale of the flatmap # (created by freesurfer) to the inflated map in a couple other subjects. # For two hemispheres in two other subjects, it ranged from 1.37 to 1.5. # There doesn't seem to be a principled way to set this number, since the # flatmap is stretched and distorted anyway, and that stretch varies by # subject and by hemisphere. Note, tho,that this doesn't change # distortions, just the overall scale of the thing. So here we are. # ML 2018.07.05 extra_scale = 1.4 uv *= (infl_scale * extra_scale) # put back polys, etc that were missing pts_flat = pts.copy() pts_flat[idx, :2] = uv # Set z coords for the manifold vertices to 0 pts_flat[idx, 2] = 0 # Re-set scale for non-manifold vertices nz = pts_flat[:, 2] != 0 pts_flat[nz, 2] -= np.mean(pts_flat[nz, 2]) # Flip X axis for right hem (necessary?) if hemi=='rh': # Flip Y axis upside down pts_flat[:, 1] = -pts_flat[:, 1] pts_flat[:, 0] = -pts_flat[:, 0] # Modify output .obj file to reflect flattening #surfpath = os.path.join(freesurfer_subject_dir, subject, "surf", "flat_{hemi}.gii") #fname = surfpath.format(hemi=hemi) #print("Writing %s"%fname) formats.write_obj(obj_out.replace('_slim','.flat_slim'), pts=pts_flat, polys=polys) return def show_surface(subject, hemi, surface_type, patch=None, flatten_step=None, freesurfer_subject_dir=None): """ Parameters ---------- subject: str freesurfer subject name hemi: str 'lh' or 'rh' for left hemisphere or right hemisphere surface_type : str type of surface to show, e.g. 'patch', 'surf', etc if 'patch', patch name must be specified in patch kwarg patch: str name of patch, e.g. 'flatten.flat', 'flatten2.flat', etc """ meshlab_path = options.config.get('dependency_paths', 'meshlab') if meshlab_path == 'None': try: # exists in system but not available in config meshlab_path = sp.check_output('command -v meshlab', shell=True).strip() warnings.warn('Using system meshlab: %s'%meshlab_path) except sp.CalledProcessError: raise ValueError('You must have installed meshlab to call this function.') if freesurfer_subject_dir is None: freesurfer_subject_dir = os.environ['SUBJECTS_DIR'] if surface_type in ('inflated', 'fiducial'): input_type = 'surf' else: input_type = surface_type fpath = freesurfer.get_paths(subject, hemi, input_type, freesurfer_subject_dir=freesurfer_subject_dir) if not 'obj' in fpath: pts, polys, curv = freesurfer.get_surf(subject, hemi, surface_type, patch=patch, flatten_step=flatten_step, freesurfer_subject_dir=freesurfer_subject_dir) # TODO: use tempfile library here objf = '/tmp/temp_surf.obj' formats.write_obj(objf, pts, polys) else: objf = fpath.format(name=patch) # Call meshlab to display surface out = sp.check_output([meshlab_path, objf]) ### DEPRECATED ###
[docs]def fix_wm(subject): """Initializes an interface to make white matter edits to the surface. This will open two windows -- a tkmedit window that makes the actual edits, as well as a mayavi window to display the surface. Clicking on the mayavi window will drop markers which can be loaded using the "Goto Save Point" button in tkmedit. If you wish to load the other hemisphere, simply close the mayavi window and the other hemisphere will pop up. Mayavi will stop popping up once the tkmedit window is closed. Once the tkmedit window is closed, a variety of autorecon options are available. When autorecon finishes, the new surfaces are immediately imported into the pycortex database. Parameters ---------- subject : str Name of the subject to edit """ warnings.warn("Deprecated! We recommend using edit_segmentation() and rerun_recon() instead of fix_wm() and fix_pia().") status = _cycle_surf(subject, "smoothwm") cmd = "tkmedit {subj} wm.mgz lh.smoothwm -aux brainmask.mgz -aux-surface rh.smoothwm" sp.call(shlex.split(cmd.format(subj=subject))) status.value = 0 resp = input("1) Run autorecon-wm?\n2) Run autorecon-cp?\n3) Do nothing?\n (Choose 1, 2, or 3)") if resp == "1": freesurfer.autorecon(subject, "wm") elif resp == "2": freesurfer.autorecon(subject, "cp") elif resp == "3": print("Doing nothing...") return import_freesurfer_subject(subject)
[docs]def fix_pia(subject): """Initializes an interface to make pial surface edits. This function will open two windows -- a tkmedit window that makse the actual edits, as well as a mayavi window to display the surface. Clicking on the mayavi window will drop markers which can be loaded using the "Goto Save Point" button in tkmedit. If you wish to load the other hemisphere, simply close the mayavi window and the other hemisphere will pop up. Mayavi will stop popping up once the tkmedit window is closed. Once the tkmedit window is closed, a variety of autorecon options are available. When autorecon finishes, the new surfaces are immediately imported into the pycortex database. Parameters ---------- subject : str Name of the subject to edit """ warnings.warn("Deprecated! We recommend using edit_segmentation() and rerun_recon() instead of fix_wm() and fix_pia().") status = _cycle_surf(subject, "pial") cmd = "tkmedit {subj} brainmask.mgz lh.smoothwm -aux T1.mgz -aux-surface rh.smoothwm" sp.call(shlex.split(cmd.format(subj=subject))) status.value = 0 resp = input("1) Run autorecon-pia?\n2) Run autorecon-wm?\n3) Do nothing?\n (Choose 1, 2, or 3)") if resp == "1": freesurfer.autorecon(subject, "pia") elif resp == "2": freesurfer.autorecon(subject, "wm") elif resp == "3": print("Doing nothing...") return import_freesurfer_subject(subject)
def _cycle_surf(subject, surf): status = mp.Value('b', 1) def cycle_surf(): idx, hemis = 0, ['lh', 'rh'] while status.value > 0: hemi = hemis[idx%len(hemis)] idx += 1 #HELLISH CODE FOLLOWS, I heavily apologize for this awful code #In order for this to work well, mayavi has to block until you close the window #Unfortunately, with IPython's event hook, mlab.show does not block anymore #There is no way to force mayavi to block, and hooking directly into backend vtk objects cause it to crash out #Thus, the only safe way is to call python using subprocess cmd = "python -m cortex.freesurfer {subj} {hemi} {surf}" sp.call(shlex.split(cmd.format(subj=subject, hemi=hemi, surf=surf))) proc = mp.Process(target=cycle_surf) proc.start() return status