.. only:: html
.. note::
:class: sphx-glr-download-link-note
Click :ref:`here ` to download the full example code
.. rst-class:: sphx-glr-example-title
.. _sphx_glr_auto_examples_quickflat_plot_cutouts.py:
===========================
Plot cutouts on the flatmap
===========================
Cutouts are manually generated cuts of the cortical surface to highlight
a region of interest.
Cutouts are defined as sub-layers of the `cutouts` layer
in //overlays.svg.
The parameter `cutout` of the `quickflat.make_figure` method should be the
name of the flatmap cutout defined in the `overlays.svg` file.
.. image:: /auto_examples/quickflat/images/sphx_glr_plot_cutouts_001.png
:alt: plot cutouts
:class: sphx-glr-single-img
.. code-block:: default
import cortex
import numpy as np
np.random.seed(1234)
# Name of a sub-layer of the 'cutouts' layer in overlays.svg file
cutout_name = "VisualCortexRight"
# Create a random pycortex Volume
volume = cortex.Volume.random(subject='S1', xfmname='fullhead')
# Plot a flatmap with the data projected onto the surface
# Highlight the curvature and which cutout to be displayed
_ = cortex.quickflat.make_figure(volume,
with_curvature=True,
cutout=cutout_name)
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 0 minutes 2.249 seconds)
.. _sphx_glr_download_auto_examples_quickflat_plot_cutouts.py:
.. only :: html
.. container:: sphx-glr-footer
:class: sphx-glr-footer-example
.. container:: sphx-glr-download sphx-glr-download-python
:download:`Download Python source code: plot_cutouts.py `
.. container:: sphx-glr-download sphx-glr-download-jupyter
:download:`Download Jupyter notebook: plot_cutouts.ipynb `
.. only:: html
.. rst-class:: sphx-glr-signature
`Gallery generated by Sphinx-Gallery `_