Source code for cortex.align

"""Contains functions for making alignments between functional data and the surface, or, finding where the brain is.
"""
import os
import numpy as np
from builtins import input

[docs]def manual(subject, xfmname, reference=None, **kwargs): """Open GUI for manually aligning a functional volume to the cortical surface for `subject`. This creates a new transform called `xfm`. The name of a nibabel-readable file (e.g. nii) should be supplied as `reference`. This image will be copied into the database. To modify an existing functional-anatomical transform, `reference` can be left blank, and the previously used reference will be loaded. <<ADD DETAILS ABOUT TRANSFORMATION MATRIX FORMAT HERE>> When the GUI is closed, the transform will be saved into the pycortex database. The GUI requires Mayavi support. Parameters ---------- subject : str Subject identifier. xfmname : str String identifying the transform to be created or loaded. reference : str, optional Path to a nibabel-readable image that will be used as the reference for this transform. If given the default value of None, this function will attempt to load an existing reference image from the database. kwargs : dict Passed to mayavi_aligner.get_aligner. Returns ------- m : 2D ndarray, shape (4, 4) Transformation matrix. """ from .database import db from .mayavi_aligner import get_aligner def save_callback(aligner): db.save_xfm(subject, xfmname, aligner.get_xfm("magnet"), xfmtype='magnet', reference=reference) print("saved xfm") def view_callback(aligner): print('view-only mode! ignoring changes') # Check whether transform w/ this xfmname already exists view_only_mode = False try: db.get_xfm(subject, xfmname) # Transform exists, make sure that reference is None if reference is not None: raise ValueError('Refusing to overwrite reference for existing transform %s, use reference=None to load stored reference' % xfmname) # if masks have been cached, quit! user must remove them by hand from glob import glob if len(glob(db.get_paths(subject)['masks'].format(xfmname=xfmname, type='*'))): print('Refusing to overwrite existing transform %s because there are cached masks. Delete the masks manually if you want to modify the transform.' % xfmname) checked = False while not checked: resp = input("Do you want to continue in view-only mode? (Y/N) ").lower().strip() if resp in ["y", "yes", "n", "no"]: checked = True if resp in ["y", "yes"]: view_only_mode = True print("Continuing in view-only mode...") else: raise ValueError("Exiting...") else: print("Didn't get that, please try again..") except IOError: # Transform does not exist, make sure that reference exists if reference is None or not os.path.exists(reference): raise ValueError('Reference image file (%s) does not exist' % reference) m = get_aligner(subject, xfmname, epifile=reference, **kwargs) m.save_callback = view_callback if view_only_mode else save_callback m.configure_traits() return m
def fs_manual(subject, xfmname, output_name="register.lta", wm_color="yellow", pial_color="blue", wm_surface='white', noclean=False, reference=None, inspect_only=False): """Open Freesurfer FreeView GUI for manually aligning/adjusting a functional volume to the cortical surface for `subject`. This creates a new transform called `xfmname`. The name of a nibabel-readable file (e.g. NIfTI) should be supplied as `reference`. This image will be copied into the database. IMPORTANT: This function assumes that the resulting .lta file is saved as: "{default folder chosen by FreeView (should be /tmp/fsalign_xxx)}/{output_name}". NOTE: Half-fixed some potential bugs in here, related to assumptions about how results from mri_info calls would be formatted. IFF .dat files are written based on nii files that have been stripped of their headers, then there will be an extra line at the top stating that the coordinates are assumed to be in mm. Without this line, the code here fails. Seems brittle, ripe for future bugs. ALSO: all the freesurfer environment stuff shouldn't be necessary, except that I don't know what vox2ras-tkr is doing. Parameters ---------- subject : str Subject identifier. xfmname : str The name of the transform to be modified. output_name : str The name of the .lta file generated after FreeView editing. wm_color : str | "blue" Color of the white matter surface. Default is "blue". This can also be adjusted in the FreeView GUI. pial_color : str | "red" Color of the pial surface. Default is "red". This can also be adjusted the FreeView GUI. noclean : boolean | False If True, intermediate files will not be removed from /tmp/fsalign_xxx (this is useful for debugging things), and the returned value will be the name of the temp directory. Default False. reference : str name of reference (generally, functional) volume. Only provide this if you are working from scratch (if no transform exists already), else it will throw an error. inspect_only : boolean | False Whether to open transform to view only (if True, nothing is saved when freeview is closed) wm_surface : string name for white matter surface to use. 'white' or 'smoothwm' Returns ------- Nothing unless noclean is true. """ import subprocess as sp import tempfile import shutil from .xfm import Transform from .database import db retval = None try: try: cache = tempfile.mkdtemp(prefix="fsalign_") sub_xfm = db.get_xfm(subject, xfmname) # if masks have been cached, quit! user must remove them by hand from glob import glob masks_exist = len(glob(db.get_paths(subject)['masks'].format(xfmname=xfmname, type='*'))) if masks_exist and not inspect_only: print('Refusing to overwrite existing transform %s because there are cached masks. Delete the masks manually if you want to modify the transform.' % xfmname) raise ValueError('Exiting...') if reference is not None: raise ValueError('Refusing to overwrite extant reference for transform') except IOError: if reference is None: print("Transform does not exist!") if reference is None: # Load load extant transform-relevant things reference = sub_xfm.reference.get_filename() _ = sub_xfm.to_freesurfer(os.path.join(cache, "register.dat"), subject) # Transform in freesurfer .dat format # Command for FreeView and run cmd = ("freeview -v $SUBJECTS_DIR/{sub}/mri/orig.mgz " "{ref}:reg={reg} " "-f $SUBJECTS_DIR/{sub}/surf/lh.{wms}:edgecolor={wmc} $SUBJECTS_DIR/{sub}/surf/rh.{wms}:edgecolor={wmc} " "$SUBJECTS_DIR/{sub}/surf/lh.pial:edgecolor={pialc} $SUBJECTS_DIR/{sub}/surf/rh.pial:edgecolor={pialc}") cmd = cmd.format(sub=subject, ref=reference, reg=os.path.join(cache, "register.dat"), wmc=wm_color, pialc=pial_color, wms=wm_surface) print('=== Calling (NO REFERENCE PROVIDED): ===') print(cmd) else: # Command for FreeView and run cmd = ("freeview -v $SUBJECTS_DIR/{sub}/mri/orig.mgz " "{ref} " "-f $SUBJECTS_DIR/{sub}/surf/lh.{wms}:edgecolor={wmc} $SUBJECTS_DIR/{sub}/surf/rh.{wms}:edgecolor={wmc} " "$SUBJECTS_DIR/{sub}/surf/lh.pial:edgecolor={pialc} $SUBJECTS_DIR/{sub}/surf/rh.pial:edgecolor={pialc}") cmd = cmd.format(sub=subject, ref=reference, wmc=wm_color, pialc=pial_color, wms=wm_surface) print('=== Calling: ===') print(cmd) if not inspect_only: sfile = os.path.join(cache, output_name) print('\nREGISTRATION MUST BE SAVED AS:\n\n{}'.format(sfile)) # Run and save transform when user is done editing if sp.call(cmd, shell=True) != 0: raise IOError("Problem with FreeView!") else: if not inspect_only: # Convert transform into .dat format # Unclear why we're not just saving in .dat format above...? reg_dat = os.path.join(cache, os.path.splitext(output_name)[0] + ".dat") cmd = "lta_convert --inlta {inlta} --outreg {regdat}" cmd = cmd.format(inlta=os.path.join(cache, output_name), regdat=reg_dat) if sp.call(cmd, shell=True) != 0: raise IOError("Error converting lta into dat!") # Save transform to pycortex xfm = Transform.from_freesurfer(reg_dat, reference, subject) db.save_xfm(subject, xfmname, xfm.xfm, xfmtype='coord', reference=reference) print("saved xfm") except Exception as e: raise(e) finally: if not noclean: shutil.rmtree(cache) else: retval = cache return retval
[docs]def automatic(subject, xfmname, reference, noclean=False, bbrtype="signed", pre_flirt_args='', use_fs_bbr=False, epi_mask=False): """Create an automatic alignment using the FLIRT boundary-based alignment (BBR) from FSL. If `noclean`, intermediate files will not be removed from /tmp. The `reference` image and resulting transform called `xfmname` will be automatically stored in the database. It's good practice to open up this transform afterward in the manual aligner and check how it worked. Do that using the following (with the same `subject` and `xfmname` used here, no need for `reference`): > align.manual(subject, xfmname) If automatic alignment gives you a very bad answer, you can try giving the pre-BBR FLIRT some hints by passing '-usesqform' in as `pre_flirt_args`. Parameters ---------- subject : str Subject identifier. xfmname : str String identifying the transform to be created. reference : str Path to a nibabel-readable image that will be used as the reference for this transform. Usually, this is a single (3D) functional data volume. noclean : bool, optional If True intermediate files will not be removed from /tmp (this is useful for debugging things), and the returned value will be the name of the temp directory. Default False. bbrtype : str, optional The 'bbrtype' argument that is passed to FLIRT. pre_flirt_args : str, optional Additional arguments that are passed to the FLIRT pre-alignment step (not BBR). use_fs_bbr : bool, optional If True will use freesurfer bbregister instead of FSL BBR. epi_mask : bool, optional If True, and use_fs_bbr is True, then the flag --epi-mask is passed to bbregister to mask out areas with spatial distortions. This setting is to be used whenever the reference was not distortion corrected. Returns ------- Nothing unless `noclean` is True. """ import shlex import shutil import tempfile import subprocess as sp from .database import db from .xfm import Transform from .options import config fsl_prefix = config.get("basic", "fsl_prefix") schfile = os.path.join(os.path.split(os.path.abspath(__file__))[0], "bbr.sch") retval = None try: cache = tempfile.mkdtemp() absreference = os.path.abspath(reference) if use_fs_bbr: print('Running freesurfer BBR') cmd = 'bbregister --s {sub} --mov {absref} --init-fsl --reg {cache}/register.dat --t2' if epi_mask: cmd += ' --epi-mask' cmd = cmd.format(sub=subject, absref=absreference, cache=cache) if sp.call(cmd, shell=True) != 0: raise IOError('Error calling freesurfer BBR!') xfm = Transform.from_freesurfer(os.path.join(cache, "register.dat"), absreference, subject) else: raw = db.get_anat(subject, type='raw').get_filename() bet = db.get_anat(subject, type='brainmask').get_filename() wmseg = db.get_anat(subject, type='whitematter').get_filename() #Compute anatomical-to-epi transform print('FLIRT pre-alignment') cmd = '{fslpre}flirt -in {epi} -ref {bet} -dof 6 {pre_flirt_args} -omat {cache}/init.mat'.format( fslpre=fsl_prefix, cache=cache, epi=absreference, bet=bet, pre_flirt_args=pre_flirt_args) if sp.call(cmd, shell=True) != 0: raise IOError('Error calling initial FLIRT') print('Running BBR') # Run epi-to-anat transform (this is more stable than anat-to-epi in FSL!) cmd = '{fslpre}flirt -in {epi} -ref {raw} -dof 6 -cost bbr -wmseg {wmseg} -init {cache}/init.mat -omat {cache}/out.mat -schedule {schfile} -bbrtype {bbrtype}' cmd = cmd.format(fslpre=fsl_prefix, cache=cache, raw=bet, wmseg=wmseg, epi=absreference, schfile=schfile, bbrtype=bbrtype) if sp.call(cmd, shell=True) != 0: raise IOError('Error calling BBR flirt') x = np.loadtxt(os.path.join(cache, "out.mat")) # Pass transform as FROM epi TO anat; transform will be inverted # back to anat-to-epi, standard direction for pycortex internal # storage by from_fsl xfm = Transform.from_fsl(x,absreference,raw) # Save as pycortex 'coord' transform xfm.save(subject,xfmname,'coord') print('Success') finally: if not noclean: shutil.rmtree(cache) else: retval = cache return retval
[docs]def autotweak(subject, xfmname): """Tweak an alignment using the FLIRT boundary-based alignment (BBR) from FSL. Ideally this function should actually use a limited search range, but it doesn't. It's probably not very useful. Parameters ---------- subject : str Subject identifier. xfmname : str String identifying the transform to be tweaked. """ import shlex import shutil import tempfile import subprocess as sp from .database import db from .xfm import Transform from .options import config fsl_prefix = config.get("basic", "fsl_prefix") schfile = os.path.join(os.path.split(os.path.abspath(__file__))[0], "bbr.sch") magnet = db.get_xfm(subject, xfmname, xfmtype='magnet') try: cache = tempfile.mkdtemp() epifile = magnet.reference.get_filename() raw = db.get_anat(subject, type='raw').get_filename() bet = db.get_anat(subject, type='brainmask').get_filename() wmseg = db.get_anat(subject, type='whitematter').get_filename() initmat = magnet.to_fsl(db.get_anat(subject, 'raw').get_filename()) with open(os.path.join(cache, 'init.mat'), 'w') as fp: np.savetxt(fp, initmat, fmt='%f') print('Running BBR') cmd = '{fslpre}flirt -in {epi} -ref {raw} -dof 6 -cost bbr -wmseg {wmseg} -init {cache}/init.mat -omat {cache}/out.mat -schedule {schfile}' cmd = cmd.format(cache=cache, raw=raw, wmseg=wmseg, epi=epifile) if sp.call(cmd, shell=True) != 0: raise IOError('Error calling BBR flirt') x = np.loadtxt(os.path.join(cache, "out.mat")) # Pass transform as FROM epi TO anat; transform will be inverted # back to anat-to-epi, standard direction for pycortex internal # storage by from_fsl Transform.from_fsl(x, epifile, raw).save(subject, xfmname+"_auto", 'coord') print('Saved transform as (%s, %s)'%(subject, xfmname+'_auto')) finally: shutil.rmtree(cache)